| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnsubseq.1 |
|
| 2 |
|
chnsubseq.2 |
|
| 3 |
2
|
chnwrd |
|
| 4 |
|
wrdf |
|
| 5 |
3 4
|
syl |
|
| 6 |
5
|
frnd |
|
| 7 |
1
|
chnwrd |
|
| 8 |
|
wrddm |
|
| 9 |
7 8
|
syl |
|
| 10 |
6 9
|
sseqtrrd |
|
| 11 |
|
dmcosseq |
|
| 12 |
10 11
|
syl |
|
| 13 |
1 2
|
chnsubseqword |
|
| 14 |
|
wrddm |
|
| 15 |
13 14
|
syl |
|
| 16 |
|
wrddm |
|
| 17 |
3 16
|
syl |
|
| 18 |
12 15 17
|
3eqtr3d |
|
| 19 |
|
0z |
|
| 20 |
|
lencl |
|
| 21 |
13 20
|
syl |
|
| 22 |
21
|
nn0zd |
|
| 23 |
|
simpr |
|
| 24 |
|
fzoopth |
|
| 25 |
19 22 23 24
|
mp3an2ani |
|
| 26 |
|
eqid |
|
| 27 |
26
|
biantrur |
|
| 28 |
25 27
|
bitr4di |
|
| 29 |
|
simpr |
|
| 30 |
29
|
oveq2d |
|
| 31 |
|
fzo0 |
|
| 32 |
30 31
|
eqtr3di |
|
| 33 |
32
|
eqeq1d |
|
| 34 |
|
eqcom |
|
| 35 |
33 34
|
bitrdi |
|
| 36 |
|
0zd |
|
| 37 |
|
lencl |
|
| 38 |
3 37
|
syl |
|
| 39 |
38
|
nn0zd |
|
| 40 |
39
|
adantr |
|
| 41 |
|
fzon |
|
| 42 |
36 40 41
|
syl2anc |
|
| 43 |
|
nn0le0eq0 |
|
| 44 |
43
|
biimpa |
|
| 45 |
38 44
|
sylan |
|
| 46 |
45
|
adantlr |
|
| 47 |
|
id |
|
| 48 |
|
0le0 |
|
| 49 |
47 48
|
eqbrtrdi |
|
| 50 |
49
|
adantl |
|
| 51 |
46 50
|
impbida |
|
| 52 |
|
eqcom |
|
| 53 |
52
|
a1i |
|
| 54 |
29
|
eqeq1d |
|
| 55 |
51 53 54
|
3bitrd |
|
| 56 |
35 42 55
|
3bitr2d |
|
| 57 |
21
|
nn0ge0d |
|
| 58 |
|
0red |
|
| 59 |
21
|
nn0red |
|
| 60 |
58 59
|
leloed |
|
| 61 |
57 60
|
mpbid |
|
| 62 |
28 56 61
|
mpjaodan |
|
| 63 |
18 62
|
mpbid |
|