| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnsubseq.1 |
|
| 2 |
|
chnsubseq.2 |
|
| 3 |
|
chnsubseq.3 |
|
| 4 |
1 2
|
chnsubseqword |
|
| 5 |
3
|
adantr |
|
| 6 |
1
|
adantr |
|
| 7 |
2
|
chnwrd |
|
| 8 |
7
|
adantr |
|
| 9 |
|
wrdf |
|
| 10 |
8 9
|
syl |
|
| 11 |
|
eldifi |
|
| 12 |
|
wrddm |
|
| 13 |
4 12
|
syl |
|
| 14 |
1 2
|
chnsubseqwl |
|
| 15 |
14
|
oveq2d |
|
| 16 |
13 15
|
eqtrd |
|
| 17 |
16
|
eleq2d |
|
| 18 |
17
|
biimpa |
|
| 19 |
11 18
|
sylan2 |
|
| 20 |
10 19
|
ffvelcdmd |
|
| 21 |
|
elfzonn0 |
|
| 22 |
19 21
|
syl |
|
| 23 |
|
simpr |
|
| 24 |
23
|
eldifbd |
|
| 25 |
|
velsn |
|
| 26 |
24 25
|
sylnib |
|
| 27 |
26
|
neqned |
|
| 28 |
|
elnnne0 |
|
| 29 |
22 27 28
|
sylanbrc |
|
| 30 |
|
nnm1ge0 |
|
| 31 |
29 30
|
syl |
|
| 32 |
22
|
nn0red |
|
| 33 |
|
peano2rem |
|
| 34 |
32 33
|
syl |
|
| 35 |
|
lencl |
|
| 36 |
7 35
|
syl |
|
| 37 |
36
|
adantr |
|
| 38 |
37
|
nn0red |
|
| 39 |
32
|
ltm1d |
|
| 40 |
11
|
adantl |
|
| 41 |
13
|
adantr |
|
| 42 |
40 41
|
eleqtrd |
|
| 43 |
|
elfzolt2 |
|
| 44 |
42 43
|
syl |
|
| 45 |
14
|
adantr |
|
| 46 |
44 45
|
breqtrd |
|
| 47 |
34 32 38 39 46
|
lttrd |
|
| 48 |
|
elfzoelz |
|
| 49 |
19 48
|
syl |
|
| 50 |
|
peano2zm |
|
| 51 |
49 50
|
syl |
|
| 52 |
|
0zd |
|
| 53 |
36
|
nn0zd |
|
| 54 |
53
|
adantr |
|
| 55 |
|
elfzo |
|
| 56 |
51 52 54 55
|
syl3anc |
|
| 57 |
31 47 56
|
mpbir2and |
|
| 58 |
10 57
|
ffvelcdmd |
|
| 59 |
|
elfzonn0 |
|
| 60 |
58 59
|
syl |
|
| 61 |
|
elfzoelz |
|
| 62 |
20 61
|
syl |
|
| 63 |
2
|
adantr |
|
| 64 |
|
wrddm |
|
| 65 |
7 64
|
syl |
|
| 66 |
15 13 65
|
3eqtr4d |
|
| 67 |
66
|
difeq1d |
|
| 68 |
67
|
eleq2d |
|
| 69 |
68
|
biimpa |
|
| 70 |
63 69
|
chnltm1 |
|
| 71 |
|
elfzo0z |
|
| 72 |
60 62 70 71
|
syl3anbrc |
|
| 73 |
5 6 20 72
|
chnlt |
|
| 74 |
10 57
|
fvco3d |
|
| 75 |
10 19
|
fvco3d |
|
| 76 |
73 74 75
|
3brtr4d |
|
| 77 |
76
|
ralrimiva |
|
| 78 |
|
ischn |
|
| 79 |
4 77 78
|
sylanbrc |
|