| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chnsubseq.1 |
⊢ ( 𝜑 → 𝑊 ∈ ( < Chain 𝐴 ) ) |
| 2 |
|
chnsubseq.2 |
⊢ ( 𝜑 → 𝐼 ∈ ( < Chain ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 3 |
|
chnsubseq.3 |
⊢ ( 𝜑 → < Po 𝐴 ) |
| 4 |
1 2
|
chnsubseqword |
⊢ ( 𝜑 → ( 𝑊 ∘ 𝐼 ) ∈ Word 𝐴 ) |
| 5 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → < Po 𝐴 ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑊 ∈ ( < Chain 𝐴 ) ) |
| 7 |
2
|
chnwrd |
⊢ ( 𝜑 → 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 9 |
|
wrdf |
⊢ ( 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝐼 : ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ⟶ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 11 |
|
eldifi |
⊢ ( 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) → 𝑥 ∈ dom ( 𝑊 ∘ 𝐼 ) ) |
| 12 |
|
wrddm |
⊢ ( ( 𝑊 ∘ 𝐼 ) ∈ Word 𝐴 → dom ( 𝑊 ∘ 𝐼 ) = ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) |
| 13 |
4 12
|
syl |
⊢ ( 𝜑 → dom ( 𝑊 ∘ 𝐼 ) = ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) |
| 14 |
1 2
|
chnsubseqwl |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) |
| 15 |
14
|
oveq2d |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 16 |
13 15
|
eqtrd |
⊢ ( 𝜑 → dom ( 𝑊 ∘ 𝐼 ) = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ dom ( 𝑊 ∘ 𝐼 ) ↔ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) ) |
| 18 |
17
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom ( 𝑊 ∘ 𝐼 ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 19 |
11 18
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 20 |
10 19
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝐼 ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 21 |
|
elfzonn0 |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) → 𝑥 ∈ ℕ0 ) |
| 22 |
19 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ ℕ0 ) |
| 23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) |
| 24 |
23
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ¬ 𝑥 ∈ { 0 } ) |
| 25 |
|
velsn |
⊢ ( 𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) |
| 26 |
24 25
|
sylnib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ¬ 𝑥 = 0 ) |
| 27 |
26
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ≠ 0 ) |
| 28 |
|
elnnne0 |
⊢ ( 𝑥 ∈ ℕ ↔ ( 𝑥 ∈ ℕ0 ∧ 𝑥 ≠ 0 ) ) |
| 29 |
22 27 28
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ ℕ ) |
| 30 |
|
nnm1ge0 |
⊢ ( 𝑥 ∈ ℕ → 0 ≤ ( 𝑥 − 1 ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 0 ≤ ( 𝑥 − 1 ) ) |
| 32 |
22
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ ℝ ) |
| 33 |
|
peano2rem |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) ∈ ℝ ) |
| 34 |
32 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝑥 − 1 ) ∈ ℝ ) |
| 35 |
|
lencl |
⊢ ( 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 36 |
7 35
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 37 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 38 |
37
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 39 |
32
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝑥 − 1 ) < 𝑥 ) |
| 40 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ dom ( 𝑊 ∘ 𝐼 ) ) |
| 41 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → dom ( 𝑊 ∘ 𝐼 ) = ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) |
| 42 |
40 41
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) ) |
| 43 |
|
elfzolt2 |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) → 𝑥 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 < ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) ) |
| 45 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( ♯ ‘ ( 𝑊 ∘ 𝐼 ) ) = ( ♯ ‘ 𝐼 ) ) |
| 46 |
44 45
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 < ( ♯ ‘ 𝐼 ) ) |
| 47 |
34 32 38 39 46
|
lttrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝑥 − 1 ) < ( ♯ ‘ 𝐼 ) ) |
| 48 |
|
elfzoelz |
⊢ ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) → 𝑥 ∈ ℤ ) |
| 49 |
19 48
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ ℤ ) |
| 50 |
|
peano2zm |
⊢ ( 𝑥 ∈ ℤ → ( 𝑥 − 1 ) ∈ ℤ ) |
| 51 |
49 50
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝑥 − 1 ) ∈ ℤ ) |
| 52 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 0 ∈ ℤ ) |
| 53 |
36
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 55 |
|
elfzo |
⊢ ( ( ( 𝑥 − 1 ) ∈ ℤ ∧ 0 ∈ ℤ ∧ ( ♯ ‘ 𝐼 ) ∈ ℤ ) → ( ( 𝑥 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( 0 ≤ ( 𝑥 − 1 ) ∧ ( 𝑥 − 1 ) < ( ♯ ‘ 𝐼 ) ) ) ) |
| 56 |
51 52 54 55
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( ( 𝑥 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ↔ ( 0 ≤ ( 𝑥 − 1 ) ∧ ( 𝑥 − 1 ) < ( ♯ ‘ 𝐼 ) ) ) ) |
| 57 |
31 47 56
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝑥 − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 58 |
10 57
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝐼 ‘ ( 𝑥 − 1 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 59 |
|
elfzonn0 |
⊢ ( ( 𝐼 ‘ ( 𝑥 − 1 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ‘ ( 𝑥 − 1 ) ) ∈ ℕ0 ) |
| 60 |
58 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝐼 ‘ ( 𝑥 − 1 ) ) ∈ ℕ0 ) |
| 61 |
|
elfzoelz |
⊢ ( ( 𝐼 ‘ 𝑥 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ‘ 𝑥 ) ∈ ℤ ) |
| 62 |
20 61
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝐼 ‘ 𝑥 ) ∈ ℤ ) |
| 63 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝐼 ∈ ( < Chain ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 64 |
|
wrddm |
⊢ ( 𝐼 ∈ Word ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → dom 𝐼 = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 65 |
7 64
|
syl |
⊢ ( 𝜑 → dom 𝐼 = ( 0 ..^ ( ♯ ‘ 𝐼 ) ) ) |
| 66 |
15 13 65
|
3eqtr4d |
⊢ ( 𝜑 → dom ( 𝑊 ∘ 𝐼 ) = dom 𝐼 ) |
| 67 |
66
|
difeq1d |
⊢ ( 𝜑 → ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) = ( dom 𝐼 ∖ { 0 } ) ) |
| 68 |
67
|
eleq2d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ↔ 𝑥 ∈ ( dom 𝐼 ∖ { 0 } ) ) ) |
| 69 |
68
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → 𝑥 ∈ ( dom 𝐼 ∖ { 0 } ) ) |
| 70 |
63 69
|
chnltm1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝐼 ‘ ( 𝑥 − 1 ) ) < ( 𝐼 ‘ 𝑥 ) ) |
| 71 |
|
elfzo0z |
⊢ ( ( 𝐼 ‘ ( 𝑥 − 1 ) ) ∈ ( 0 ..^ ( 𝐼 ‘ 𝑥 ) ) ↔ ( ( 𝐼 ‘ ( 𝑥 − 1 ) ) ∈ ℕ0 ∧ ( 𝐼 ‘ 𝑥 ) ∈ ℤ ∧ ( 𝐼 ‘ ( 𝑥 − 1 ) ) < ( 𝐼 ‘ 𝑥 ) ) ) |
| 72 |
60 62 70 71
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝐼 ‘ ( 𝑥 − 1 ) ) ∈ ( 0 ..^ ( 𝐼 ‘ 𝑥 ) ) ) |
| 73 |
5 6 20 72
|
chnlt |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑥 − 1 ) ) ) < ( 𝑊 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 74 |
10 57
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( ( 𝑊 ∘ 𝐼 ) ‘ ( 𝑥 − 1 ) ) = ( 𝑊 ‘ ( 𝐼 ‘ ( 𝑥 − 1 ) ) ) ) |
| 75 |
10 19
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( ( 𝑊 ∘ 𝐼 ) ‘ 𝑥 ) = ( 𝑊 ‘ ( 𝐼 ‘ 𝑥 ) ) ) |
| 76 |
73 74 75
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ) → ( ( 𝑊 ∘ 𝐼 ) ‘ ( 𝑥 − 1 ) ) < ( ( 𝑊 ∘ 𝐼 ) ‘ 𝑥 ) ) |
| 77 |
76
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ( ( 𝑊 ∘ 𝐼 ) ‘ ( 𝑥 − 1 ) ) < ( ( 𝑊 ∘ 𝐼 ) ‘ 𝑥 ) ) |
| 78 |
|
ischn |
⊢ ( ( 𝑊 ∘ 𝐼 ) ∈ ( < Chain 𝐴 ) ↔ ( ( 𝑊 ∘ 𝐼 ) ∈ Word 𝐴 ∧ ∀ 𝑥 ∈ ( dom ( 𝑊 ∘ 𝐼 ) ∖ { 0 } ) ( ( 𝑊 ∘ 𝐼 ) ‘ ( 𝑥 − 1 ) ) < ( ( 𝑊 ∘ 𝐼 ) ‘ 𝑥 ) ) ) |
| 79 |
4 77 78
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑊 ∘ 𝐼 ) ∈ ( < Chain 𝐴 ) ) |