Metamath Proof Explorer


Theorem chtfl

Description: The Chebyshev function does not change off the integers. (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Assertion chtfl AθA=θA

Proof

Step Hyp Ref Expression
1 flidm AA=A
2 1 oveq2d A2A=2A
3 2 ineq1d A2A=2A
4 reflcl AA
5 ppisval A0A=2A
6 4 5 syl A0A=2A
7 ppisval A0A=2A
8 3 6 7 3eqtr4d A0A=0A
9 8 sumeq1d Ap0Alogp=p0Alogp
10 chtval AθA=p0Alogp
11 4 10 syl AθA=p0Alogp
12 chtval AθA=p0Alogp
13 9 11 12 3eqtr4d AθA=θA