Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Short Studies
RP ADDTO: Basic properties of closures
cleq2lem
Next ⟩
cbvcllem
Metamath Proof Explorer
Ascii
Unicode
Theorem
cleq2lem
Description:
Equality implies bijection.
(Contributed by
RP
, 24-Jul-2020)
Ref
Expression
Hypothesis
cleq2lem.b
⊢
A
=
B
→
φ
↔
ψ
Assertion
cleq2lem
⊢
A
=
B
→
R
⊆
A
∧
φ
↔
R
⊆
B
∧
ψ
Proof
Step
Hyp
Ref
Expression
1
cleq2lem.b
⊢
A
=
B
→
φ
↔
ψ
2
sseq2
⊢
A
=
B
→
R
⊆
A
↔
R
⊆
B
3
2
1
anbi12d
⊢
A
=
B
→
R
⊆
A
∧
φ
↔
R
⊆
B
∧
ψ