Metamath Proof Explorer


Theorem climabs0

Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climabs0.1 Z=M
climabs0.2 φM
climabs0.3 φFV
climabs0.4 φGW
climabs0.5 φkZFk
climabs0.6 φkZGk=Fk
Assertion climabs0 φF0G0

Proof

Step Hyp Ref Expression
1 climabs0.1 Z=M
2 climabs0.2 φM
3 climabs0.3 φFV
4 climabs0.4 φGW
5 climabs0.5 φkZFk
6 climabs0.6 φkZGk=Fk
7 1 uztrn2 jZkjkZ
8 absidm FkFk=Fk
9 5 8 syl φkZFk=Fk
10 9 breq1d φkZFk<xFk<x
11 7 10 sylan2 φjZkjFk<xFk<x
12 11 anassrs φjZkjFk<xFk<x
13 12 ralbidva φjZkjFk<xkjFk<x
14 13 rexbidva φjZkjFk<xjZkjFk<x
15 14 ralbidv φx+jZkjFk<xx+jZkjFk<x
16 5 abscld φkZFk
17 16 recnd φkZFk
18 1 2 4 6 17 clim0c φG0x+jZkjFk<x
19 eqidd φkZFk=Fk
20 1 2 3 19 5 clim0c φF0x+jZkjFk<x
21 15 18 20 3bitr4rd φF0G0