Metamath Proof Explorer


Theorem climaddc2

Description: Limit of a constant C added to each term of a sequence. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 3-Feb-2014)

Ref Expression
Hypotheses climadd.1 Z=M
climadd.2 φM
climadd.4 φFA
climaddc1.5 φC
climaddc1.6 φGW
climaddc1.7 φkZFk
climaddc2.h φkZGk=C+Fk
Assertion climaddc2 φGC+A

Proof

Step Hyp Ref Expression
1 climadd.1 Z=M
2 climadd.2 φM
3 climadd.4 φFA
4 climaddc1.5 φC
5 climaddc1.6 φGW
6 climaddc1.7 φkZFk
7 climaddc2.h φkZGk=C+Fk
8 4 adantr φkZC
9 8 6 7 comraddd φkZGk=Fk+C
10 1 2 3 4 5 6 9 climaddc1 φGA+C
11 climcl FAA
12 3 11 syl φA
13 12 4 addcomd φA+C=C+A
14 10 13 breqtrd φGC+A