Metamath Proof Explorer


Theorem climeu

Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005)

Ref Expression
Assertion climeu FA∃!xFx

Proof

Step Hyp Ref Expression
1 climcl FAA
2 breq2 y=AFyFA
3 2 spcegv AFAyFy
4 1 3 mpcom FAyFy
5 climuni FyFxy=x
6 5 gen2 yxFyFxy=x
7 nfv yFx
8 nfv xFy
9 breq2 x=yFxFy
10 7 8 9 cbveuw ∃!xFx∃!yFy
11 breq2 y=xFyFx
12 11 eu4 ∃!yFyyFyyxFyFxy=x
13 10 12 bitri ∃!xFxyFyyxFyFxy=x
14 4 6 13 sylanblrc FA∃!xFx