| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							climcl | 
							⊢ ( 𝐹  ⇝  𝐴  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑦  =  𝐴  →  ( 𝐹  ⇝  𝑦  ↔  𝐹  ⇝  𝐴 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							spcegv | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐹  ⇝  𝐴  →  ∃ 𝑦 𝐹  ⇝  𝑦 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							mpcom | 
							⊢ ( 𝐹  ⇝  𝐴  →  ∃ 𝑦 𝐹  ⇝  𝑦 )  | 
						
						
							| 5 | 
							
								
							 | 
							climuni | 
							⊢ ( ( 𝐹  ⇝  𝑦  ∧  𝐹  ⇝  𝑥 )  →  𝑦  =  𝑥 )  | 
						
						
							| 6 | 
							
								5
							 | 
							gen2 | 
							⊢ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹  ⇝  𝑦  ∧  𝐹  ⇝  𝑥 )  →  𝑦  =  𝑥 )  | 
						
						
							| 7 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑦 𝐹  ⇝  𝑥  | 
						
						
							| 8 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑥 𝐹  ⇝  𝑦  | 
						
						
							| 9 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝐹  ⇝  𝑥  ↔  𝐹  ⇝  𝑦 ) )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							cbveuw | 
							⊢ ( ∃! 𝑥 𝐹  ⇝  𝑥  ↔  ∃! 𝑦 𝐹  ⇝  𝑦 )  | 
						
						
							| 11 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑦  =  𝑥  →  ( 𝐹  ⇝  𝑦  ↔  𝐹  ⇝  𝑥 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eu4 | 
							⊢ ( ∃! 𝑦 𝐹  ⇝  𝑦  ↔  ( ∃ 𝑦 𝐹  ⇝  𝑦  ∧  ∀ 𝑦 ∀ 𝑥 ( ( 𝐹  ⇝  𝑦  ∧  𝐹  ⇝  𝑥 )  →  𝑦  =  𝑥 ) ) )  | 
						
						
							| 13 | 
							
								10 12
							 | 
							bitri | 
							⊢ ( ∃! 𝑥 𝐹  ⇝  𝑥  ↔  ( ∃ 𝑦 𝐹  ⇝  𝑦  ∧  ∀ 𝑦 ∀ 𝑥 ( ( 𝐹  ⇝  𝑦  ∧  𝐹  ⇝  𝑥 )  →  𝑦  =  𝑥 ) ) )  | 
						
						
							| 14 | 
							
								4 6 13
							 | 
							sylanblrc | 
							⊢ ( 𝐹  ⇝  𝐴  →  ∃! 𝑥 𝐹  ⇝  𝑥 )  |