Metamath Proof Explorer


Theorem climi2

Description: Convergence of a sequence of complex numbers. (Contributed by NM, 11-Jan-2007) (Revised by Mario Carneiro, 31-Jan-2014)

Ref Expression
Hypotheses climi.1 Z=M
climi.2 φM
climi.3 φC+
climi.4 φkZFk=B
climi.5 φFA
Assertion climi2 φjZkjBA<C

Proof

Step Hyp Ref Expression
1 climi.1 Z=M
2 climi.2 φM
3 climi.3 φC+
4 climi.4 φkZFk=B
5 climi.5 φFA
6 1 2 3 4 5 climi φjZkjBBA<C
7 simpr BBA<CBA<C
8 7 ralimi kjBBA<CkjBA<C
9 8 reximi jZkjBBA<CjZkjBA<C
10 6 9 syl φjZkjBA<C