Metamath Proof Explorer


Theorem clnbgrisubgrgrim

Description: Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025)

Ref Expression
Hypotheses clnbgrisubgrgrim.i I = iEdg G
clnbgrisubgrgrim.j J = iEdg H
clnbgrisubgrgrim.n N = G ClNeighbVtx X
clnbgrisubgrgrim.m M = H ClNeighbVtx Y
clnbgrisubgrgrim.k K = x dom I | I x N
clnbgrisubgrgrim.l L = x dom J | J x M
Assertion clnbgrisubgrgrim G U H T G ISubGr N 𝑔𝑟 H ISubGr M f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i

Proof

Step Hyp Ref Expression
1 clnbgrisubgrgrim.i I = iEdg G
2 clnbgrisubgrgrim.j J = iEdg H
3 clnbgrisubgrgrim.n N = G ClNeighbVtx X
4 clnbgrisubgrgrim.m M = H ClNeighbVtx Y
5 clnbgrisubgrgrim.k K = x dom I | I x N
6 clnbgrisubgrgrim.l L = x dom J | J x M
7 eqid Vtx G = Vtx G
8 7 clnbgrssvtx G ClNeighbVtx X Vtx G
9 3 8 eqsstri N Vtx G
10 eqid Vtx H = Vtx H
11 10 clnbgrssvtx H ClNeighbVtx Y Vtx H
12 4 11 eqsstri M Vtx H
13 7 10 1 2 5 6 isubgrgrim G U H T N Vtx G M Vtx H G ISubGr N 𝑔𝑟 H ISubGr M f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i
14 9 12 13 mpanr12 G U H T G ISubGr N 𝑔𝑟 H ISubGr M f f : N 1-1 onto M g g : K 1-1 onto L i K f I i = J g i