Metamath Proof Explorer


Theorem clsneicnv

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021)

Ref Expression
Hypotheses clsnei.o O=iV,jVk𝒫jiljmi|lkm
clsnei.p P=nVp𝒫n𝒫no𝒫nnpno
clsnei.d D=PB
clsnei.f F=𝒫BOB
clsnei.h H=FD
clsnei.r φKHN
Assertion clsneicnv φH-1=DBO𝒫B

Proof

Step Hyp Ref Expression
1 clsnei.o O=iV,jVk𝒫jiljmi|lkm
2 clsnei.p P=nVp𝒫n𝒫no𝒫nnpno
3 clsnei.d D=PB
4 clsnei.f F=𝒫BOB
5 clsnei.h H=FD
6 clsnei.r φKHN
7 5 cnveqi H-1=FD-1
8 cnvco FD-1=D-1F-1
9 7 8 eqtri H-1=D-1F-1
10 3 5 6 clsneibex φBV
11 simpr φBVBV
12 2 3 11 dssmapnvod φBVD-1=D
13 pwexg BV𝒫BV
14 13 adantl φBV𝒫BV
15 eqid BO𝒫B=BO𝒫B
16 1 14 11 4 15 fsovcnvd φBVF-1=BO𝒫B
17 12 16 coeq12d φBVD-1F-1=DBO𝒫B
18 10 17 mpdan φD-1F-1=DBO𝒫B
19 9 18 eqtrid φH-1=DBO𝒫B