Metamath Proof Explorer


Theorem clsneicnv

Description: If a (pseudo-)closure function and a (pseudo-)neighborhood function are related by the H operator, then the converse of the operator is known. (Contributed by RP, 5-Jun-2021)

Ref Expression
Hypotheses clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
clsnei.d D = P B
clsnei.f F = 𝒫 B O B
clsnei.h H = F D
clsnei.r φ K H N
Assertion clsneicnv φ H -1 = D B O 𝒫 B

Proof

Step Hyp Ref Expression
1 clsnei.o O = i V , j V k 𝒫 j i l j m i | l k m
2 clsnei.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 clsnei.d D = P B
4 clsnei.f F = 𝒫 B O B
5 clsnei.h H = F D
6 clsnei.r φ K H N
7 5 cnveqi H -1 = F D -1
8 cnvco F D -1 = D -1 F -1
9 7 8 eqtri H -1 = D -1 F -1
10 3 5 6 clsneibex φ B V
11 simpr φ B V B V
12 2 3 11 dssmapnvod φ B V D -1 = D
13 pwexg B V 𝒫 B V
14 13 adantl φ B V 𝒫 B V
15 eqid B O 𝒫 B = B O 𝒫 B
16 1 14 11 4 15 fsovcnvd φ B V F -1 = B O 𝒫 B
17 12 16 coeq12d φ B V D -1 F -1 = D B O 𝒫 B
18 10 17 mpdan φ D -1 F -1 = D B O 𝒫 B
19 9 18 eqtrid φ H -1 = D B O 𝒫 B