Metamath Proof Explorer


Theorem clwlkcompbp

Description: Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022)

Ref Expression
Hypotheses clwlkcompbp.1 F = 1 st W
clwlkcompbp.2 P = 2 nd W
Assertion clwlkcompbp W ClWalks G F Walks G P P 0 = P F

Proof

Step Hyp Ref Expression
1 clwlkcompbp.1 F = 1 st W
2 clwlkcompbp.2 P = 2 nd W
3 clwlkwlk W ClWalks G W Walks G
4 wlkop W Walks G W = 1 st W 2 nd W
5 3 4 syl W ClWalks G W = 1 st W 2 nd W
6 eleq1 W = 1 st W 2 nd W W ClWalks G 1 st W 2 nd W ClWalks G
7 df-br 1 st W ClWalks G 2 nd W 1 st W 2 nd W ClWalks G
8 6 7 bitr4di W = 1 st W 2 nd W W ClWalks G 1 st W ClWalks G 2 nd W
9 isclwlk 1 st W ClWalks G 2 nd W 1 st W Walks G 2 nd W 2 nd W 0 = 2 nd W 1 st W
10 1 2 breq12i F Walks G P 1 st W Walks G 2 nd W
11 2 fveq1i P 0 = 2 nd W 0
12 1 fveq2i F = 1 st W
13 2 12 fveq12i P F = 2 nd W 1 st W
14 11 13 eqeq12i P 0 = P F 2 nd W 0 = 2 nd W 1 st W
15 10 14 anbi12i F Walks G P P 0 = P F 1 st W Walks G 2 nd W 2 nd W 0 = 2 nd W 1 st W
16 9 15 sylbb2 1 st W ClWalks G 2 nd W F Walks G P P 0 = P F
17 8 16 syl6bi W = 1 st W 2 nd W W ClWalks G F Walks G P P 0 = P F
18 5 17 mpcom W ClWalks G F Walks G P P 0 = P F