Metamath Proof Explorer


Theorem clwlkcompbp

Description: Basic properties of the components of a closed walk. (Contributed by AV, 23-May-2022)

Ref Expression
Hypotheses clwlkcompbp.1 F=1stW
clwlkcompbp.2 P=2ndW
Assertion clwlkcompbp WClWalksGFWalksGPP0=PF

Proof

Step Hyp Ref Expression
1 clwlkcompbp.1 F=1stW
2 clwlkcompbp.2 P=2ndW
3 clwlkwlk WClWalksGWWalksG
4 wlkop WWalksGW=1stW2ndW
5 3 4 syl WClWalksGW=1stW2ndW
6 eleq1 W=1stW2ndWWClWalksG1stW2ndWClWalksG
7 df-br 1stWClWalksG2ndW1stW2ndWClWalksG
8 6 7 bitr4di W=1stW2ndWWClWalksG1stWClWalksG2ndW
9 isclwlk 1stWClWalksG2ndW1stWWalksG2ndW2ndW0=2ndW1stW
10 1 2 breq12i FWalksGP1stWWalksG2ndW
11 2 fveq1i P0=2ndW0
12 1 fveq2i F=1stW
13 2 12 fveq12i PF=2ndW1stW
14 11 13 eqeq12i P0=PF2ndW0=2ndW1stW
15 10 14 anbi12i FWalksGPP0=PF1stWWalksG2ndW2ndW0=2ndW1stW
16 9 15 sylbb2 1stWClWalksG2ndWFWalksGPP0=PF
17 8 16 syl6bi W=1stW2ndWWClWalksGFWalksGPP0=PF
18 5 17 mpcom WClWalksGFWalksGPP0=PF