Metamath Proof Explorer


Theorem clwlkl1loop

Description: A closed walk of length 1 is a loop. (Contributed by AV, 22-Apr-2021)

Ref Expression
Assertion clwlkl1loop FuniEdgGFClWalksGPF=1P0=P1P0EdgG

Proof

Step Hyp Ref Expression
1 isclwlk FClWalksGPFWalksGPP0=PF
2 fveq2 F=1PF=P1
3 2 eqeq2d F=1P0=PFP0=P1
4 3 anbi2d F=1FWalksGPP0=PFFWalksGPP0=P1
5 simp2r F=1FWalksGPP0=P1FuniEdgGP0=P1
6 simp3 F=1FWalksGPP0=P1FuniEdgGFuniEdgG
7 simp2l F=1FWalksGPP0=P1FuniEdgGFWalksGP
8 simpr FWalksGPP0=P1P0=P1
9 8 anim2i F=1FWalksGPP0=P1F=1P0=P1
10 9 3adant3 F=1FWalksGPP0=P1FuniEdgGF=1P0=P1
11 wlkl1loop FuniEdgGFWalksGPF=1P0=P1P0EdgG
12 6 7 10 11 syl21anc F=1FWalksGPP0=P1FuniEdgGP0EdgG
13 5 12 jca F=1FWalksGPP0=P1FuniEdgGP0=P1P0EdgG
14 13 3exp F=1FWalksGPP0=P1FuniEdgGP0=P1P0EdgG
15 4 14 sylbid F=1FWalksGPP0=PFFuniEdgGP0=P1P0EdgG
16 15 com13 FuniEdgGFWalksGPP0=PFF=1P0=P1P0EdgG
17 1 16 biimtrid FuniEdgGFClWalksGPF=1P0=P1P0EdgG
18 17 3imp FuniEdgGFClWalksGPF=1P0=P1P0EdgG