Description: The set of (closed) walks on vertex X of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of X iff there is a loop at X . (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clwwlknon1.v | |
|
clwwlknon1.c | |
||
clwwlknon1.e | |
||
Assertion | clwwlknon1sn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknon1.v | |
|
2 | clwwlknon1.c | |
|
3 | clwwlknon1.e | |
|
4 | df-nel | |
|
5 | 1 2 3 | clwwlknon1nloop | |
6 | 5 | adantl | |
7 | s1cli | |
|
8 | 7 | elexi | |
9 | 8 | snnz | |
10 | 9 | nesymi | |
11 | eqeq1 | |
|
12 | 10 11 | mtbiri | |
13 | 6 12 | syl | |
14 | 13 | ex | |
15 | 4 14 | biimtrrid | |
16 | 15 | con4d | |
17 | 1 2 3 | clwwlknon1loop | |
18 | 17 | ex | |
19 | 16 18 | impbid | |