Metamath Proof Explorer


Theorem clwwlknon1sn

Description: The set of (closed) walks on vertex X of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of X iff there is a loop at X . (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022)

Ref Expression
Hypotheses clwwlknon1.v V=VtxG
clwwlknon1.c C=ClWWalksNOnG
clwwlknon1.e E=EdgG
Assertion clwwlknon1sn XVXC1=⟨“X”⟩XE

Proof

Step Hyp Ref Expression
1 clwwlknon1.v V=VtxG
2 clwwlknon1.c C=ClWWalksNOnG
3 clwwlknon1.e E=EdgG
4 df-nel XE¬XE
5 1 2 3 clwwlknon1nloop XEXC1=
6 5 adantl XVXEXC1=
7 s1cli ⟨“X”⟩WordV
8 7 elexi ⟨“X”⟩V
9 8 snnz ⟨“X”⟩
10 9 nesymi ¬=⟨“X”⟩
11 eqeq1 XC1=XC1=⟨“X”⟩=⟨“X”⟩
12 10 11 mtbiri XC1=¬XC1=⟨“X”⟩
13 6 12 syl XVXE¬XC1=⟨“X”⟩
14 13 ex XVXE¬XC1=⟨“X”⟩
15 4 14 biimtrrid XV¬XE¬XC1=⟨“X”⟩
16 15 con4d XVXC1=⟨“X”⟩XE
17 1 2 3 clwwlknon1loop XVXEXC1=⟨“X”⟩
18 17 ex XVXEXC1=⟨“X”⟩
19 16 18 impbid XVXC1=⟨“X”⟩XE