Metamath Proof Explorer


Theorem cmbr2i

Description: Alternate definition of the commutes relation. Remark in Kalmbach p. 23. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 AC
pjoml2.2 BC
Assertion cmbr2i A𝐶BA=ABAB

Proof

Step Hyp Ref Expression
1 pjoml2.1 AC
2 pjoml2.2 BC
3 1 2 cmcm4i A𝐶BA𝐶B
4 1 choccli AC
5 2 choccli BC
6 4 5 cmbri A𝐶BA=ABAB
7 eqcom A=ABABABAB=A
8 1 2 chjcli ABC
9 1 5 chjcli ABC
10 8 9 chincli ABABC
11 10 1 chcon3i ABAB=AA=ABAB
12 8 9 chdmm1i ABAB=ABAB
13 1 2 chdmj1i AB=AB
14 1 5 chdmj1i AB=AB
15 13 14 oveq12i ABAB=ABAB
16 12 15 eqtri ABAB=ABAB
17 16 eqeq2i A=ABABA=ABAB
18 7 11 17 3bitrri A=ABABA=ABAB
19 3 6 18 3bitri A𝐶BA=ABAB