Metamath Proof Explorer


Theorem cncfdmsn

Description: A complex function with a singleton domain is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion cncfdmsn ABxAB:AcnB

Proof

Step Hyp Ref Expression
1 cnfdmsn ABxAB𝒫ACn𝒫B
2 snssi AA
3 snssi BB
4 eqid TopOpenfld=TopOpenfld
5 eqid TopOpenfld𝑡A=TopOpenfld𝑡A
6 eqid TopOpenfld𝑡B=TopOpenfld𝑡B
7 4 5 6 cncfcn ABAcnB=TopOpenfld𝑡ACnTopOpenfld𝑡B
8 2 3 7 syl2an ABAcnB=TopOpenfld𝑡ACnTopOpenfld𝑡B
9 4 cnfldtopon TopOpenfldTopOn
10 simpl ABA
11 restsn2 TopOpenfldTopOnATopOpenfld𝑡A=𝒫A
12 9 10 11 sylancr ABTopOpenfld𝑡A=𝒫A
13 simpr ABB
14 restsn2 TopOpenfldTopOnBTopOpenfld𝑡B=𝒫B
15 9 13 14 sylancr ABTopOpenfld𝑡B=𝒫B
16 12 15 oveq12d ABTopOpenfld𝑡ACnTopOpenfld𝑡B=𝒫ACn𝒫B
17 8 16 eqtr2d AB𝒫ACn𝒫B=AcnB
18 1 17 eleqtrd ABxAB:AcnB