| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnfdmsn |
|- ( ( A e. CC /\ B e. CC ) -> ( x e. { A } |-> B ) e. ( ~P { A } Cn ~P { B } ) ) |
| 2 |
|
snssi |
|- ( A e. CC -> { A } C_ CC ) |
| 3 |
|
snssi |
|- ( B e. CC -> { B } C_ CC ) |
| 4 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 5 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t { A } ) = ( ( TopOpen ` CCfld ) |`t { A } ) |
| 6 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t { B } ) = ( ( TopOpen ` CCfld ) |`t { B } ) |
| 7 |
4 5 6
|
cncfcn |
|- ( ( { A } C_ CC /\ { B } C_ CC ) -> ( { A } -cn-> { B } ) = ( ( ( TopOpen ` CCfld ) |`t { A } ) Cn ( ( TopOpen ` CCfld ) |`t { B } ) ) ) |
| 8 |
2 3 7
|
syl2an |
|- ( ( A e. CC /\ B e. CC ) -> ( { A } -cn-> { B } ) = ( ( ( TopOpen ` CCfld ) |`t { A } ) Cn ( ( TopOpen ` CCfld ) |`t { B } ) ) ) |
| 9 |
4
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 10 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 11 |
|
restsn2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ A e. CC ) -> ( ( TopOpen ` CCfld ) |`t { A } ) = ~P { A } ) |
| 12 |
9 10 11
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( ( TopOpen ` CCfld ) |`t { A } ) = ~P { A } ) |
| 13 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 14 |
|
restsn2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ B e. CC ) -> ( ( TopOpen ` CCfld ) |`t { B } ) = ~P { B } ) |
| 15 |
9 13 14
|
sylancr |
|- ( ( A e. CC /\ B e. CC ) -> ( ( TopOpen ` CCfld ) |`t { B } ) = ~P { B } ) |
| 16 |
12 15
|
oveq12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( TopOpen ` CCfld ) |`t { A } ) Cn ( ( TopOpen ` CCfld ) |`t { B } ) ) = ( ~P { A } Cn ~P { B } ) ) |
| 17 |
8 16
|
eqtr2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ~P { A } Cn ~P { B } ) = ( { A } -cn-> { B } ) ) |
| 18 |
1 17
|
eleqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( x e. { A } |-> B ) e. ( { A } -cn-> { B } ) ) |