Step |
Hyp |
Ref |
Expression |
1 |
|
divcncff.f |
|- ( ph -> F e. ( X -cn-> CC ) ) |
2 |
|
divcncff.g |
|- ( ph -> G e. ( X -cn-> ( CC \ { 0 } ) ) ) |
3 |
|
cncfrss |
|- ( F e. ( X -cn-> CC ) -> X C_ CC ) |
4 |
|
cnex |
|- CC e. _V |
5 |
4
|
ssex |
|- ( X C_ CC -> X e. _V ) |
6 |
1 3 5
|
3syl |
|- ( ph -> X e. _V ) |
7 |
|
cncff |
|- ( F e. ( X -cn-> CC ) -> F : X --> CC ) |
8 |
1 7
|
syl |
|- ( ph -> F : X --> CC ) |
9 |
8
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. CC ) |
10 |
|
cncff |
|- ( G e. ( X -cn-> ( CC \ { 0 } ) ) -> G : X --> ( CC \ { 0 } ) ) |
11 |
2 10
|
syl |
|- ( ph -> G : X --> ( CC \ { 0 } ) ) |
12 |
11
|
ffvelrnda |
|- ( ( ph /\ x e. X ) -> ( G ` x ) e. ( CC \ { 0 } ) ) |
13 |
8
|
feqmptd |
|- ( ph -> F = ( x e. X |-> ( F ` x ) ) ) |
14 |
11
|
feqmptd |
|- ( ph -> G = ( x e. X |-> ( G ` x ) ) ) |
15 |
6 9 12 13 14
|
offval2 |
|- ( ph -> ( F oF / G ) = ( x e. X |-> ( ( F ` x ) / ( G ` x ) ) ) ) |
16 |
13 1
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( F ` x ) ) e. ( X -cn-> CC ) ) |
17 |
14 2
|
eqeltrrd |
|- ( ph -> ( x e. X |-> ( G ` x ) ) e. ( X -cn-> ( CC \ { 0 } ) ) ) |
18 |
16 17
|
divcncf |
|- ( ph -> ( x e. X |-> ( ( F ` x ) / ( G ` x ) ) ) e. ( X -cn-> CC ) ) |
19 |
15 18
|
eqeltrd |
|- ( ph -> ( F oF / G ) e. ( X -cn-> CC ) ) |