Metamath Proof Explorer


Theorem cnchl

Description: The set of complex numbers is a complex Hilbert space. (Contributed by Steve Rodriguez, 28-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis cnhl.6 U=+×abs
Assertion cnchl UCHilOLD

Proof

Step Hyp Ref Expression
1 cnhl.6 U=+×abs
2 1 cnbn UCBan
3 1 cncph UCPreHilOLD
4 ishlo UCHilOLDUCBanUCPreHilOLD
5 2 3 4 mpbir2an UCHilOLD