Metamath Proof Explorer


Theorem cnmetcoval

Description: Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses cnmetcoval.d D = abs
cnmetcoval.f φ F : A ×
cnmetcoval.b φ B A
Assertion cnmetcoval φ D F B = 1 st F B 2 nd F B

Proof

Step Hyp Ref Expression
1 cnmetcoval.d D = abs
2 cnmetcoval.f φ F : A ×
3 cnmetcoval.b φ B A
4 2 3 fvovco φ D F B = 1 st F B D 2 nd F B
5 2 3 ffvelrnd φ F B ×
6 xp1st F B × 1 st F B
7 5 6 syl φ 1 st F B
8 xp2nd F B × 2 nd F B
9 5 8 syl φ 2 nd F B
10 1 cnmetdval 1 st F B 2 nd F B 1 st F B D 2 nd F B = 1 st F B 2 nd F B
11 7 9 10 syl2anc φ 1 st F B D 2 nd F B = 1 st F B 2 nd F B
12 4 11 eqtrd φ D F B = 1 st F B 2 nd F B