Metamath Proof Explorer


Theorem cnmpt2mulr

Description: Continuity of ring multiplication; analogue of cnmpt22f which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J=TopOpenR
cnmpt1mulr.t ·˙=R
cnmpt1mulr.r φRTopRing
cnmpt1mulr.k φKTopOnX
cnmpt2mulr.l φLTopOnY
cnmpt2mulr.a φxX,yYAK×tLCnJ
cnmpt2mulr.b φxX,yYBK×tLCnJ
Assertion cnmpt2mulr φxX,yYA·˙BK×tLCnJ

Proof

Step Hyp Ref Expression
1 mulrcn.j J=TopOpenR
2 cnmpt1mulr.t ·˙=R
3 cnmpt1mulr.r φRTopRing
4 cnmpt1mulr.k φKTopOnX
5 cnmpt2mulr.l φLTopOnY
6 cnmpt2mulr.a φxX,yYAK×tLCnJ
7 cnmpt2mulr.b φxX,yYBK×tLCnJ
8 eqid mulGrpR=mulGrpR
9 8 1 mgptopn J=TopOpenmulGrpR
10 8 2 mgpplusg ·˙=+mulGrpR
11 8 trgtmd RTopRingmulGrpRTopMnd
12 3 11 syl φmulGrpRTopMnd
13 9 10 12 4 5 6 7 cnmpt2plusg φxX,yYA·˙BK×tLCnJ