Metamath Proof Explorer


Theorem cnmpt2mulr

Description: Continuity of ring multiplication; analogue of cnmpt22f which cannot be used directly because .r is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Hypotheses mulrcn.j J = TopOpen R
cnmpt1mulr.t · ˙ = R
cnmpt1mulr.r φ R TopRing
cnmpt1mulr.k φ K TopOn X
cnmpt2mulr.l φ L TopOn Y
cnmpt2mulr.a φ x X , y Y A K × t L Cn J
cnmpt2mulr.b φ x X , y Y B K × t L Cn J
Assertion cnmpt2mulr φ x X , y Y A · ˙ B K × t L Cn J

Proof

Step Hyp Ref Expression
1 mulrcn.j J = TopOpen R
2 cnmpt1mulr.t · ˙ = R
3 cnmpt1mulr.r φ R TopRing
4 cnmpt1mulr.k φ K TopOn X
5 cnmpt2mulr.l φ L TopOn Y
6 cnmpt2mulr.a φ x X , y Y A K × t L Cn J
7 cnmpt2mulr.b φ x X , y Y B K × t L Cn J
8 eqid mulGrp R = mulGrp R
9 8 1 mgptopn J = TopOpen mulGrp R
10 8 2 mgpplusg · ˙ = + mulGrp R
11 8 trgtmd R TopRing mulGrp R TopMnd
12 3 11 syl φ mulGrp R TopMnd
13 9 10 12 4 5 6 7 cnmpt2plusg φ x X , y Y A · ˙ B K × t L Cn J