Metamath Proof Explorer


Theorem cnmpt2plusg

Description: Continuity of the group sum; analogue of cnmpt22f which cannot be used directly because +g is not a function. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Hypotheses tgpcn.j J=TopOpenG
cnmpt1plusg.p +˙=+G
cnmpt1plusg.g φGTopMnd
cnmpt1plusg.k φKTopOnX
cnmpt2plusg.l φLTopOnY
cnmpt2plusg.a φxX,yYAK×tLCnJ
cnmpt2plusg.b φxX,yYBK×tLCnJ
Assertion cnmpt2plusg φxX,yYA+˙BK×tLCnJ

Proof

Step Hyp Ref Expression
1 tgpcn.j J=TopOpenG
2 cnmpt1plusg.p +˙=+G
3 cnmpt1plusg.g φGTopMnd
4 cnmpt1plusg.k φKTopOnX
5 cnmpt2plusg.l φLTopOnY
6 cnmpt2plusg.a φxX,yYAK×tLCnJ
7 cnmpt2plusg.b φxX,yYBK×tLCnJ
8 txtopon KTopOnXLTopOnYK×tLTopOnX×Y
9 4 5 8 syl2anc φK×tLTopOnX×Y
10 eqid BaseG=BaseG
11 1 10 tmdtopon GTopMndJTopOnBaseG
12 3 11 syl φJTopOnBaseG
13 cnf2 K×tLTopOnX×YJTopOnBaseGxX,yYAK×tLCnJxX,yYA:X×YBaseG
14 9 12 6 13 syl3anc φxX,yYA:X×YBaseG
15 eqid xX,yYA=xX,yYA
16 15 fmpo xXyYABaseGxX,yYA:X×YBaseG
17 14 16 sylibr φxXyYABaseG
18 17 r19.21bi φxXyYABaseG
19 18 r19.21bi φxXyYABaseG
20 19 3impa φxXyYABaseG
21 cnf2 K×tLTopOnX×YJTopOnBaseGxX,yYBK×tLCnJxX,yYB:X×YBaseG
22 9 12 7 21 syl3anc φxX,yYB:X×YBaseG
23 eqid xX,yYB=xX,yYB
24 23 fmpo xXyYBBaseGxX,yYB:X×YBaseG
25 22 24 sylibr φxXyYBBaseG
26 25 r19.21bi φxXyYBBaseG
27 26 r19.21bi φxXyYBBaseG
28 27 3impa φxXyYBBaseG
29 eqid +𝑓G=+𝑓G
30 10 2 29 plusfval ABaseGBBaseGA+𝑓GB=A+˙B
31 20 28 30 syl2anc φxXyYA+𝑓GB=A+˙B
32 31 mpoeq3dva φxX,yYA+𝑓GB=xX,yYA+˙B
33 1 29 tmdcn GTopMnd+𝑓GJ×tJCnJ
34 3 33 syl φ+𝑓GJ×tJCnJ
35 4 5 6 7 34 cnmpt22f φxX,yYA+𝑓GBK×tLCnJ
36 32 35 eqeltrrd φxX,yYA+˙BK×tLCnJ