| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tgpcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 2 |
|
cnmpt1plusg.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
cnmpt1plusg.g |
⊢ ( 𝜑 → 𝐺 ∈ TopMnd ) |
| 4 |
|
cnmpt1plusg.k |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) |
| 5 |
|
cnmpt2plusg.l |
⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) |
| 6 |
|
cnmpt2plusg.a |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 7 |
|
cnmpt2plusg.b |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 8 |
|
txtopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 9 |
4 5 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
| 11 |
1 10
|
tmdtopon |
⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 13 |
|
cnf2 |
⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 14 |
9 12 6 13
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 15 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) |
| 16 |
15
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐺 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐴 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 17 |
14 16
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 18 |
17
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 19 |
18
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 20 |
19
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 21 |
|
cnf2 |
⊢ ( ( ( 𝐾 ×t 𝐿 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 22 |
9 12 7 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 23 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) |
| 24 |
23
|
fmpo |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝐺 ) ↔ ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ 𝐵 ) : ( 𝑋 × 𝑌 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 25 |
22 24
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
| 26 |
25
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑦 ∈ 𝑌 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
| 27 |
26
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
| 28 |
27
|
3impa |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
| 29 |
|
eqid |
⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) |
| 30 |
10 2 29
|
plusfval |
⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐺 ) ∧ 𝐵 ∈ ( Base ‘ 𝐺 ) ) → ( 𝐴 ( +𝑓 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 31 |
20 28 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐴 ( +𝑓 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| 32 |
31
|
mpoeq3dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( +𝑓 ‘ 𝐺 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 + 𝐵 ) ) ) |
| 33 |
1 29
|
tmdcn |
⊢ ( 𝐺 ∈ TopMnd → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 34 |
3 33
|
syl |
⊢ ( 𝜑 → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 35 |
4 5 6 7 34
|
cnmpt22f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 ( +𝑓 ‘ 𝐺 ) 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |
| 36 |
32 35
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 ↦ ( 𝐴 + 𝐵 ) ) ∈ ( ( 𝐾 ×t 𝐿 ) Cn 𝐽 ) ) |