| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tmdcn2.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
tmdcn2.2 |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
| 3 |
|
tmdcn2.3 |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
2 1
|
tmdtopon |
⊢ ( 𝐺 ∈ TopMnd → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 5 |
4
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) |
| 6 |
|
eqid |
⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) |
| 7 |
2 6
|
tmdcn |
⊢ ( 𝐺 ∈ TopMnd → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
| 9 |
|
simpr1 |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 𝑋 ∈ 𝐵 ) |
| 10 |
|
simpr2 |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 𝑌 ∈ 𝐵 ) |
| 11 |
9 10
|
opelxpd |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 12 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝐵 ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) ) |
| 13 |
5 5 12
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) ) |
| 14 |
|
toponuni |
⊢ ( ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( 𝐵 × 𝐵 ) ) → ( 𝐵 × 𝐵 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
| 15 |
13 14
|
syl |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝐵 × 𝐵 ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
| 16 |
11 15
|
eleqtrd |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 〈 𝑋 , 𝑌 〉 ∈ ∪ ( 𝐽 ×t 𝐽 ) ) |
| 17 |
|
eqid |
⊢ ∪ ( 𝐽 ×t 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) |
| 18 |
17
|
cncnpi |
⊢ ( ( ( +𝑓 ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ 〈 𝑋 , 𝑌 〉 ∈ ∪ ( 𝐽 ×t 𝐽 ) ) → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 19 |
8 16 18
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( +𝑓 ‘ 𝐺 ) ∈ ( ( ( 𝐽 ×t 𝐽 ) CnP 𝐽 ) ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 20 |
|
simplr |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → 𝑈 ∈ 𝐽 ) |
| 21 |
1 3 6
|
plusfval |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
| 22 |
9 10 21
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) = ( 𝑋 + 𝑌 ) ) |
| 23 |
|
simpr3 |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ 𝑈 ) |
| 24 |
22 23
|
eqeltrd |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ( 𝑋 ( +𝑓 ‘ 𝐺 ) 𝑌 ) ∈ 𝑈 ) |
| 25 |
5 5 19 20 9 10 24
|
txcnpi |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) ) |
| 26 |
|
dfss3 |
⊢ ( ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ∀ 𝑧 ∈ ( 𝑢 × 𝑣 ) 𝑧 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) |
| 27 |
|
eleq1 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) ) |
| 28 |
1 6
|
plusffn |
⊢ ( +𝑓 ‘ 𝐺 ) Fn ( 𝐵 × 𝐵 ) |
| 29 |
|
elpreima |
⊢ ( ( +𝑓 ‘ 𝐺 ) Fn ( 𝐵 × 𝐵 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) ) |
| 30 |
28 29
|
ax-mp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) |
| 31 |
27 30
|
bitrdi |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝑧 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) ) |
| 32 |
31
|
ralxp |
⊢ ( ∀ 𝑧 ∈ ( 𝑢 × 𝑣 ) 𝑧 ∈ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) |
| 33 |
26 32
|
bitri |
⊢ ( ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ↔ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) ) |
| 34 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) |
| 35 |
|
df-ov |
⊢ ( 𝑥 ( +𝑓 ‘ 𝐺 ) 𝑦 ) = ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
| 36 |
1 3 6
|
plusfval |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +𝑓 ‘ 𝐺 ) 𝑦 ) = ( 𝑥 + 𝑦 ) ) |
| 37 |
35 36
|
eqtr3id |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( 𝑥 + 𝑦 ) ) |
| 38 |
34 37
|
sylbi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) = ( 𝑥 + 𝑦 ) ) |
| 39 |
38
|
eleq1d |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) → ( ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ↔ ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| 40 |
39
|
biimpa |
⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) → ( 𝑥 + 𝑦 ) ∈ 𝑈 ) |
| 41 |
40
|
2ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ∧ ( ( +𝑓 ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ 𝑈 ) → ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) |
| 42 |
33 41
|
sylbi |
⊢ ( ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) → ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) |
| 43 |
42
|
3anim3i |
⊢ ( ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) → ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| 44 |
43
|
reximi |
⊢ ( ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| 45 |
44
|
reximi |
⊢ ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ ( +𝑓 ‘ 𝐺 ) “ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |
| 46 |
25 45
|
syl |
⊢ ( ( ( 𝐺 ∈ TopMnd ∧ 𝑈 ∈ 𝐽 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑋 + 𝑌 ) ∈ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑋 ∈ 𝑢 ∧ 𝑌 ∈ 𝑣 ∧ ∀ 𝑥 ∈ 𝑢 ∀ 𝑦 ∈ 𝑣 ( 𝑥 + 𝑦 ) ∈ 𝑈 ) ) |