Description: Lemma for iirevcn and related functions. (Contributed by Mario Carneiro, 6-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cnmptre.1 | |
|
cnmptre.2 | |
||
cnmptre.3 | |
||
cnmptre.4 | |
||
cnmptre.5 | |
||
cnmptre.6 | |
||
cnmptre.7 | |
||
Assertion | cnmptre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmptre.1 | |
|
2 | cnmptre.2 | |
|
3 | cnmptre.3 | |
|
4 | cnmptre.4 | |
|
5 | cnmptre.5 | |
|
6 | cnmptre.6 | |
|
7 | cnmptre.7 | |
|
8 | eqid | |
|
9 | 1 | cnfldtopon | |
10 | 9 | a1i | |
11 | ax-resscn | |
|
12 | 4 11 | sstrdi | |
13 | 8 10 12 7 | cnmpt1res | |
14 | eqid | |
|
15 | 1 14 | rerest | |
16 | 4 15 | syl | |
17 | 16 2 | eqtr4di | |
18 | 17 | oveq1d | |
19 | 13 18 | eleqtrd | |
20 | 6 | fmpttd | |
21 | 20 | frnd | |
22 | 5 11 | sstrdi | |
23 | cnrest2 | |
|
24 | 9 21 22 23 | mp3an2i | |
25 | 19 24 | mpbid | |
26 | 1 14 | rerest | |
27 | 5 26 | syl | |
28 | 27 3 | eqtr4di | |
29 | 28 | oveq2d | |
30 | 25 29 | eleqtrd | |