Metamath Proof Explorer


Theorem cnmptre

Description: Lemma for iirevcn and related functions. (Contributed by Mario Carneiro, 6-Jun-2014)

Ref Expression
Hypotheses cnmptre.1 R=TopOpenfld
cnmptre.2 J=topGenran.𝑡A
cnmptre.3 K=topGenran.𝑡B
cnmptre.4 φA
cnmptre.5 φB
cnmptre.6 φxAFB
cnmptre.7 φxFRCnR
Assertion cnmptre φxAFJCnK

Proof

Step Hyp Ref Expression
1 cnmptre.1 R=TopOpenfld
2 cnmptre.2 J=topGenran.𝑡A
3 cnmptre.3 K=topGenran.𝑡B
4 cnmptre.4 φA
5 cnmptre.5 φB
6 cnmptre.6 φxAFB
7 cnmptre.7 φxFRCnR
8 eqid R𝑡A=R𝑡A
9 1 cnfldtopon RTopOn
10 9 a1i φRTopOn
11 ax-resscn
12 4 11 sstrdi φA
13 8 10 12 7 cnmpt1res φxAFR𝑡ACnR
14 eqid topGenran.=topGenran.
15 1 14 rerest AR𝑡A=topGenran.𝑡A
16 4 15 syl φR𝑡A=topGenran.𝑡A
17 16 2 eqtr4di φR𝑡A=J
18 17 oveq1d φR𝑡ACnR=JCnR
19 13 18 eleqtrd φxAFJCnR
20 6 fmpttd φxAF:AB
21 20 frnd φranxAFB
22 5 11 sstrdi φB
23 cnrest2 RTopOnranxAFBBxAFJCnRxAFJCnR𝑡B
24 9 21 22 23 mp3an2i φxAFJCnRxAFJCnR𝑡B
25 19 24 mpbid φxAFJCnR𝑡B
26 1 14 rerest BR𝑡B=topGenran.𝑡B
27 5 26 syl φR𝑡B=topGenran.𝑡B
28 27 3 eqtr4di φR𝑡B=K
29 28 oveq2d φJCnR𝑡B=JCnK
30 25 29 eleqtrd φxAFJCnK