Metamath Proof Explorer


Theorem cnresima

Description: A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Assertion cnresima J Top K Top F J Cn K F J Cn K 𝑡 ran F

Proof

Step Hyp Ref Expression
1 simp3 J Top K Top F J Cn K F J Cn K
2 simp2 J Top K Top F J Cn K K Top
3 eqid K = K
4 3 toptopon K Top K TopOn K
5 2 4 sylib J Top K Top F J Cn K K TopOn K
6 ssidd J Top K Top F J Cn K ran F ran F
7 eqid J = J
8 7 3 cnf F J Cn K F : J K
9 8 frnd F J Cn K ran F K
10 9 3ad2ant3 J Top K Top F J Cn K ran F K
11 cnrest2 K TopOn K ran F ran F ran F K F J Cn K F J Cn K 𝑡 ran F
12 5 6 10 11 syl3anc J Top K Top F J Cn K F J Cn K F J Cn K 𝑡 ran F
13 1 12 mpbid J Top K Top F J Cn K F J Cn K 𝑡 ran F