Step |
Hyp |
Ref |
Expression |
1 |
|
simp3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
2 |
|
simp2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top ) |
3 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
4 |
3
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
5 |
2 4
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
6 |
|
ssidd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ran 𝐹 ⊆ ran 𝐹 ) |
7 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
8 |
7 3
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
9 |
8
|
frnd |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ran 𝐹 ⊆ ∪ 𝐾 ) |
10 |
9
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ran 𝐹 ⊆ ∪ 𝐾 ) |
11 |
|
cnrest2 |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) ) |
12 |
5 6 10 11
|
syl3anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) ) |
13 |
1 12
|
mpbid |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐾 ↾t ran 𝐹 ) ) ) |