Metamath Proof Explorer


Theorem cnresima

Description: A continuous function is continuous onto its image. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Dec-2013)

Ref Expression
Assertion cnresima ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐾t ran 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 simp3 ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) )
2 simp2 ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top )
3 eqid 𝐾 = 𝐾
4 3 toptopon ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
5 2 4 sylib ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ ( TopOn ‘ 𝐾 ) )
6 ssidd ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ran 𝐹 ⊆ ran 𝐹 )
7 eqid 𝐽 = 𝐽
8 7 3 cnf ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝐽 𝐾 )
9 8 frnd ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → ran 𝐹 𝐾 )
10 9 3ad2ant3 ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ran 𝐹 𝐾 )
11 cnrest2 ( ( 𝐾 ∈ ( TopOn ‘ 𝐾 ) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾t ran 𝐹 ) ) ) )
12 5 6 10 11 syl3anc ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ 𝐹 ∈ ( 𝐽 Cn ( 𝐾t ran 𝐹 ) ) ) )
13 1 12 mpbid ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 ∈ ( 𝐽 Cn ( 𝐾t ran 𝐹 ) ) )