| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) | 
						
							| 2 |  | simp2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  ∈  Top ) | 
						
							| 3 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 4 | 3 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 5 | 2 4 | sylib | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 6 |  | ssidd | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ran  𝐹  ⊆  ran  𝐹 ) | 
						
							| 7 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 8 | 7 3 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 9 | 8 | frnd | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  ran  𝐹  ⊆  ∪  𝐾 ) | 
						
							| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ran  𝐹  ⊆  ∪  𝐾 ) | 
						
							| 11 |  | cnrest2 | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ ∪  𝐾 )  ∧  ran  𝐹  ⊆  ran  𝐹  ∧  ran  𝐹  ⊆  ∪  𝐾 )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  𝐹  ∈  ( 𝐽  Cn  ( 𝐾  ↾t  ran  𝐹 ) ) ) ) | 
						
							| 12 | 5 6 10 11 | syl3anc | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  𝐹  ∈  ( 𝐽  Cn  ( 𝐾  ↾t  ran  𝐹 ) ) ) ) | 
						
							| 13 | 1 12 | mpbid | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  ∈  ( 𝐽  Cn  ( 𝐾  ↾t  ran  𝐹 ) ) ) |