Metamath Proof Explorer


Theorem cntzrcl

Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses cntzrcl.b B=BaseM
cntzrcl.z Z=CntzM
Assertion cntzrcl XZSMVSB

Proof

Step Hyp Ref Expression
1 cntzrcl.b B=BaseM
2 cntzrcl.z Z=CntzM
3 noel ¬X
4 fvprc ¬MVCntzM=
5 2 4 eqtrid ¬MVZ=
6 5 fveq1d ¬MVZS=S
7 0fv S=
8 6 7 eqtrdi ¬MVZS=
9 8 eleq2d ¬MVXZSX
10 3 9 mtbiri ¬MV¬XZS
11 10 con4i XZSMV
12 eqid +M=+M
13 1 12 2 cntzfval MVZ=x𝒫ByB|zxy+Mz=z+My
14 11 13 syl XZSZ=x𝒫ByB|zxy+Mz=z+My
15 14 dmeqd XZSdomZ=domx𝒫ByB|zxy+Mz=z+My
16 eqid x𝒫ByB|zxy+Mz=z+My=x𝒫ByB|zxy+Mz=z+My
17 16 dmmptss domx𝒫ByB|zxy+Mz=z+My𝒫B
18 15 17 eqsstrdi XZSdomZ𝒫B
19 elfvdm XZSSdomZ
20 18 19 sseldd XZSS𝒫B
21 20 elpwid XZSSB
22 11 21 jca XZSMVSB