Metamath Proof Explorer


Theorem cntzrec

Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cntzrec.b B=BaseM
cntzrec.z Z=CntzM
Assertion cntzrec SBTBSZTTZS

Proof

Step Hyp Ref Expression
1 cntzrec.b B=BaseM
2 cntzrec.z Z=CntzM
3 ralcom xSyTx+My=y+MxyTxSx+My=y+Mx
4 eqcom x+My=y+Mxy+Mx=x+My
5 4 2ralbii yTxSx+My=y+MxyTxSy+Mx=x+My
6 3 5 bitri xSyTx+My=y+MxyTxSy+Mx=x+My
7 6 a1i SBTBxSyTx+My=y+MxyTxSy+Mx=x+My
8 eqid +M=+M
9 1 8 2 sscntz SBTBSZTxSyTx+My=y+Mx
10 1 8 2 sscntz TBSBTZSyTxSy+Mx=x+My
11 10 ancoms SBTBTZSyTxSy+Mx=x+My
12 7 9 11 3bitr4d SBTBSZTTZS