Metamath Proof Explorer


Theorem cntzval

Description: Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cntzfval.b B=BaseM
cntzfval.p +˙=+M
cntzfval.z Z=CntzM
Assertion cntzval SBZS=xB|ySx+˙y=y+˙x

Proof

Step Hyp Ref Expression
1 cntzfval.b B=BaseM
2 cntzfval.p +˙=+M
3 cntzfval.z Z=CntzM
4 1 2 3 cntzfval MVZ=s𝒫BxB|ysx+˙y=y+˙x
5 4 fveq1d MVZS=s𝒫BxB|ysx+˙y=y+˙xS
6 1 fvexi BV
7 6 elpw2 S𝒫BSB
8 raleq s=Sysx+˙y=y+˙xySx+˙y=y+˙x
9 8 rabbidv s=SxB|ysx+˙y=y+˙x=xB|ySx+˙y=y+˙x
10 eqid s𝒫BxB|ysx+˙y=y+˙x=s𝒫BxB|ysx+˙y=y+˙x
11 6 rabex xB|ySx+˙y=y+˙xV
12 9 10 11 fvmpt S𝒫Bs𝒫BxB|ysx+˙y=y+˙xS=xB|ySx+˙y=y+˙x
13 7 12 sylbir SBs𝒫BxB|ysx+˙y=y+˙xS=xB|ySx+˙y=y+˙x
14 5 13 sylan9eq MVSBZS=xB|ySx+˙y=y+˙x
15 0fv S=
16 fvprc ¬MVCntzM=
17 3 16 eqtrid ¬MVZ=
18 17 fveq1d ¬MVZS=S
19 ssrab2 xB|ySx+˙y=y+˙xB
20 fvprc ¬MVBaseM=
21 1 20 eqtrid ¬MVB=
22 19 21 sseqtrid ¬MVxB|ySx+˙y=y+˙x
23 ss0 xB|ySx+˙y=y+˙xxB|ySx+˙y=y+˙x=
24 22 23 syl ¬MVxB|ySx+˙y=y+˙x=
25 15 18 24 3eqtr4a ¬MVZS=xB|ySx+˙y=y+˙x
26 25 adantr ¬MVSBZS=xB|ySx+˙y=y+˙x
27 14 26 pm2.61ian SBZS=xB|ySx+˙y=y+˙x