Metamath Proof Explorer


Theorem cnvcnvss

Description: The double converse of a class is a subclass. Exercise 2 of TakeutiZaring p. 25. (Contributed by NM, 23-Jul-2004)

Ref Expression
Assertion cnvcnvss A-1-1A

Proof

Step Hyp Ref Expression
1 cnvcnv A-1-1=AV×V
2 inss1 AV×VA
3 1 2 eqsstri A-1-1A