Metamath Proof Explorer


Theorem cnveqd

Description: Equality deduction for converse relation. (Contributed by NM, 6-Dec-2013)

Ref Expression
Hypothesis cnveqd.1 φA=B
Assertion cnveqd φA-1=B-1

Proof

Step Hyp Ref Expression
1 cnveqd.1 φA=B
2 cnveq A=BA-1=B-1
3 1 2 syl φA-1=B-1