Metamath Proof Explorer


Theorem coe1fval2

Description: Univariate polynomial coefficient vectors expressed as a function composition. (Contributed by Stefan O'Rear, 21-Mar-2015)

Ref Expression
Hypotheses coe1fval.a A=coe1F
coe1f.b B=BaseP
coe1f.p P=Poly1R
coe1fval2.g G=y01𝑜×y
Assertion coe1fval2 FBA=FG

Proof

Step Hyp Ref Expression
1 coe1fval.a A=coe1F
2 coe1f.b B=BaseP
3 coe1f.p P=Poly1R
4 coe1fval2.g G=y01𝑜×y
5 3 2 ply1bascl FBFBasePwSer1R
6 eqid BasePwSer1R=BasePwSer1R
7 eqid PwSer1R=PwSer1R
8 1 6 7 4 coe1fval3 FBasePwSer1RA=FG
9 5 8 syl FBA=FG