Metamath Proof Explorer


Theorem coepr

Description: Composition with the converse membership relation. (Contributed by Scott Fenton, 18-Feb-2013)

Ref Expression
Hypotheses coep.1 AV
coep.2 BV
Assertion coepr ARE-1BxAxRB

Proof

Step Hyp Ref Expression
1 coep.1 AV
2 coep.2 BV
3 vex xV
4 1 3 brcnv AE-1xxEA
5 1 epeli xEAxA
6 4 5 bitri AE-1xxA
7 6 anbi1i AE-1xxRBxAxRB
8 7 exbii xAE-1xxRBxxAxRB
9 1 2 brco ARE-1BxAE-1xxRB
10 df-rex xAxRBxxAxRB
11 8 9 10 3bitr4i ARE-1BxAxRB