Metamath Proof Explorer


Theorem cofidf2

Description: If " F is a section of G " in a category of small categories (in a universe), then the morphism part of F is injective, and the morphism part of G is surjective in the image of F . (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidval.i I = id func D
cofidval.b B = Base D
cofidval.f φ F D Func E G
cofidval.k φ K E Func D L
cofidval.o φ K L func F G = I
cofidval.h H = Hom D
cofidf2.j J = Hom E
cofidf2.x φ X B
cofidf2.y φ Y B
Assertion cofidf2 φ X G Y : X H Y 1-1 F X J F Y F X L F Y : F X J F Y onto X H Y

Proof

Step Hyp Ref Expression
1 cofidval.i I = id func D
2 cofidval.b B = Base D
3 cofidval.f φ F D Func E G
4 cofidval.k φ K E Func D L
5 cofidval.o φ K L func F G = I
6 cofidval.h H = Hom D
7 cofidf2.j J = Hom E
8 cofidf2.x φ X B
9 cofidf2.y φ Y B
10 df-br F D Func E G F G D Func E
11 3 10 sylib φ F G D Func E
12 df-br K E Func D L K L E Func D
13 4 12 sylib φ K L E Func D
14 1 2 11 13 5 6 7 8 9 cofidf2a φ X 2 nd F G Y : X H Y 1-1 1 st F G X J 1 st F G Y 1 st F G X 2 nd K L 1 st F G Y : 1 st F G X J 1 st F G Y onto X H Y
15 3 func2nd φ 2 nd F G = G
16 15 oveqd φ X 2 nd F G Y = X G Y
17 eqidd φ X H Y = X H Y
18 3 func1st φ 1 st F G = F
19 18 fveq1d φ 1 st F G X = F X
20 18 fveq1d φ 1 st F G Y = F Y
21 19 20 oveq12d φ 1 st F G X J 1 st F G Y = F X J F Y
22 16 17 21 f1eq123d φ X 2 nd F G Y : X H Y 1-1 1 st F G X J 1 st F G Y X G Y : X H Y 1-1 F X J F Y
23 4 func2nd φ 2 nd K L = L
24 23 19 20 oveq123d φ 1 st F G X 2 nd K L 1 st F G Y = F X L F Y
25 24 21 17 foeq123d φ 1 st F G X 2 nd K L 1 st F G Y : 1 st F G X J 1 st F G Y onto X H Y F X L F Y : F X J F Y onto X H Y
26 22 25 anbi12d φ X 2 nd F G Y : X H Y 1-1 1 st F G X J 1 st F G Y 1 st F G X 2 nd K L 1 st F G Y : 1 st F G X J 1 st F G Y onto X H Y X G Y : X H Y 1-1 F X J F Y F X L F Y : F X J F Y onto X H Y
27 14 26 mpbid φ X G Y : X H Y 1-1 F X J F Y F X L F Y : F X J F Y onto X H Y