Metamath Proof Explorer


Theorem cofidfth

Description: If " F is a section of G " in a category of small categories (in a universe), then F is faithful. Combined with cofidf1 , this theorem proves that F is an embedding (a faithful functor injective on objects, remark 3.28(1) of Adamek p. 34). (Contributed by Zhi Wang, 15-Nov-2025)

Ref Expression
Hypotheses cofidfth.i I = id func D
cofidfth.f φ F D Func E G
cofidfth.k φ K E Func D L
cofidfth.o φ K L func F G = I
Assertion cofidfth φ F D Faith E G

Proof

Step Hyp Ref Expression
1 cofidfth.i I = id func D
2 cofidfth.f φ F D Func E G
3 cofidfth.k φ K E Func D L
4 cofidfth.o φ K L func F G = I
5 eqid Base D = Base D
6 2 adantr φ x Base D y Base D F D Func E G
7 3 adantr φ x Base D y Base D K E Func D L
8 4 adantr φ x Base D y Base D K L func F G = I
9 eqid Hom D = Hom D
10 eqid Hom E = Hom E
11 simprl φ x Base D y Base D x Base D
12 simprr φ x Base D y Base D y Base D
13 1 5 6 7 8 9 10 11 12 cofidf2 φ x Base D y Base D x G y : x Hom D y 1-1 F x Hom E F y F x L F y : F x Hom E F y onto x Hom D y
14 13 simpld φ x Base D y Base D x G y : x Hom D y 1-1 F x Hom E F y
15 14 ralrimivva φ x Base D y Base D x G y : x Hom D y 1-1 F x Hom E F y
16 5 9 10 isfth2 F D Faith E G F D Func E G x Base D y Base D x G y : x Hom D y 1-1 F x Hom E F y
17 2 15 16 sylanbrc φ F D Faith E G