Metamath Proof Explorer


Theorem cofu2nd

Description: Value of the morphism part of the functor composition. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses cofuval.b B=BaseC
cofuval.f φFCFuncD
cofuval.g φGDFuncE
cofu2nd.x φXB
cofu2nd.y φYB
Assertion cofu2nd φX2ndGfuncFY=1stFX2ndG1stFYX2ndFY

Proof

Step Hyp Ref Expression
1 cofuval.b B=BaseC
2 cofuval.f φFCFuncD
3 cofuval.g φGDFuncE
4 cofu2nd.x φXB
5 cofu2nd.y φYB
6 1 2 3 cofuval φGfuncF=1stG1stFxB,yB1stFx2ndG1stFyx2ndFy
7 6 fveq2d φ2ndGfuncF=2nd1stG1stFxB,yB1stFx2ndG1stFyx2ndFy
8 fvex 1stGV
9 fvex 1stFV
10 8 9 coex 1stG1stFV
11 1 fvexi BV
12 11 11 mpoex xB,yB1stFx2ndG1stFyx2ndFyV
13 10 12 op2nd 2nd1stG1stFxB,yB1stFx2ndG1stFyx2ndFy=xB,yB1stFx2ndG1stFyx2ndFy
14 7 13 eqtrdi φ2ndGfuncF=xB,yB1stFx2ndG1stFyx2ndFy
15 simprl φx=Xy=Yx=X
16 15 fveq2d φx=Xy=Y1stFx=1stFX
17 simprr φx=Xy=Yy=Y
18 17 fveq2d φx=Xy=Y1stFy=1stFY
19 16 18 oveq12d φx=Xy=Y1stFx2ndG1stFy=1stFX2ndG1stFY
20 15 17 oveq12d φx=Xy=Yx2ndFy=X2ndFY
21 19 20 coeq12d φx=Xy=Y1stFx2ndG1stFyx2ndFy=1stFX2ndG1stFYX2ndFY
22 ovex 1stFX2ndG1stFYV
23 ovex X2ndFYV
24 22 23 coex 1stFX2ndG1stFYX2ndFYV
25 24 a1i φ1stFX2ndG1stFYX2ndFYV
26 14 21 4 5 25 ovmpod φX2ndGfuncFY=1stFX2ndG1stFYX2ndFY