Metamath Proof Explorer


Theorem collexd

Description: The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypothesis collexd.1 φAV
Assertion collexd φFCollAV

Proof

Step Hyp Ref Expression
1 collexd.1 φAV
2 df-coll FCollA=xAScottFx
3 scottex2 ScottFxV
4 3 a1i φScottFxV
5 4 ralrimivw φxAScottFxV
6 iunexg AVxAScottFxVxAScottFxV
7 1 5 6 syl2anc φxAScottFxV
8 2 7 eqeltrid φFCollAV