Metamath Proof Explorer


Theorem conjnsg

Description: A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015)

Ref Expression
Hypotheses conjghm.x X=BaseG
conjghm.p +˙=+G
conjghm.m -˙=-G
conjsubg.f F=xSA+˙x-˙A
Assertion conjnsg SNrmSGrpGAXS=ranF

Proof

Step Hyp Ref Expression
1 conjghm.x X=BaseG
2 conjghm.p +˙=+G
3 conjghm.m -˙=-G
4 conjsubg.f F=xSA+˙x-˙A
5 nsgsubg SNrmSGrpGSSubGrpG
6 eqid yX|zXy+˙zSz+˙yS=yX|zXy+˙zSz+˙yS
7 6 1 2 isnsg4 SNrmSGrpGSSubGrpGyX|zXy+˙zSz+˙yS=X
8 7 simprbi SNrmSGrpGyX|zXy+˙zSz+˙yS=X
9 8 eleq2d SNrmSGrpGAyX|zXy+˙zSz+˙ySAX
10 9 biimpar SNrmSGrpGAXAyX|zXy+˙zSz+˙yS
11 1 2 3 4 6 conjnmz SSubGrpGAyX|zXy+˙zSz+˙ySS=ranF
12 5 10 11 syl2an2r SNrmSGrpGAXS=ranF