Metamath Proof Explorer


Theorem cononrel2

Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion cononrel2 ABB-1-1=

Proof

Step Hyp Ref Expression
1 cnvco ABB-1-1-1=BB-1-1-1A-1
2 cnvnonrel BB-1-1-1=
3 2 coeq1i BB-1-1-1A-1=A-1
4 co01 A-1=
5 1 3 4 3eqtri ABB-1-1-1=
6 5 cnveqi ABB-1-1-1-1=-1
7 relco RelABB-1-1
8 dfrel2 RelABB-1-1ABB-1-1-1-1=ABB-1-1
9 7 8 mpbi ABB-1-1-1-1=ABB-1-1
10 cnv0 -1=
11 6 9 10 3eqtr3i ABB-1-1=