Metamath Proof Explorer


Theorem coprmdvds2d

Description: If an integer is divisible by two coprime integers, then it is divisible by their product, a deduction version. (Contributed by metakunt, 12-May-2024)

Ref Expression
Hypotheses coprmdvds2d.1 φK
coprmdvds2d.2 φM
coprmdvds2d.3 φN
coprmdvds2d.4 φKgcdM=1
coprmdvds2d.5 φKN
coprmdvds2d.6 φMN
Assertion coprmdvds2d φK MN

Proof

Step Hyp Ref Expression
1 coprmdvds2d.1 φK
2 coprmdvds2d.2 φM
3 coprmdvds2d.3 φN
4 coprmdvds2d.4 φKgcdM=1
5 coprmdvds2d.5 φKN
6 coprmdvds2d.6 φMN
7 1 2 3 3jca φKMN
8 7 4 jca φKMNKgcdM=1
9 coprmdvds2 KMNKgcdM=1KNMNK MN
10 8 9 syl φKNMNK MN
11 5 6 10 mp2and φK MN