Metamath Proof Explorer


Theorem cosmpi

Description: Cosine of a number less _pi . (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion cosmpi AcosAπ=cosA

Proof

Step Hyp Ref Expression
1 picn π
2 cossub AπcosAπ=cosAcosπ+sinAsinπ
3 1 2 mpan2 AcosAπ=cosAcosπ+sinAsinπ
4 cospi cosπ=1
5 4 oveq2i cosAcosπ=cosA-1
6 coscl AcosA
7 neg1cn 1
8 mulcom cosA1cosA-1=-1cosA
9 7 8 mpan2 cosAcosA-1=-1cosA
10 mulm1 cosA-1cosA=cosA
11 9 10 eqtrd cosAcosA-1=cosA
12 6 11 syl AcosA-1=cosA
13 5 12 eqtrid AcosAcosπ=cosA
14 sinpi sinπ=0
15 14 oveq2i sinAsinπ=sinA0
16 sincl AsinA
17 16 mul01d AsinA0=0
18 15 17 eqtrid AsinAsinπ=0
19 13 18 oveq12d AcosAcosπ+sinAsinπ=-cosA+0
20 6 negcld AcosA
21 20 addridd A-cosA+0=cosA
22 19 21 eqtrd AcosAcosπ+sinAsinπ=cosA
23 3 22 eqtrd AcosAπ=cosA