Metamath Proof Explorer


Theorem coss12d

Description: Subset deduction for composition of two classes. (Contributed by RP, 24-Dec-2019)

Ref Expression
Hypotheses coss12d.a φAB
coss12d.c φCD
Assertion coss12d φACBD

Proof

Step Hyp Ref Expression
1 coss12d.a φAB
2 coss12d.c φCD
3 2 ssbrd φxCyxDy
4 1 ssbrd φyAzyBz
5 3 4 anim12d φxCyyAzxDyyBz
6 5 eximdv φyxCyyAzyxDyyBz
7 6 ssopab2dv φxz|yxCyyAzxz|yxDyyBz
8 df-co AC=xz|yxCyyAz
9 df-co BD=xz|yxDyyBz
10 7 8 9 3sstr4g φACBD