Metamath Proof Explorer


Theorem cossssid2

Description: Equivalent expressions for the class of cosets by R to be a subset of the identity class. (Contributed by Peter Mazsa, 10-Mar-2019)

Ref Expression
Assertion cossssid2 RIxyuuRxuRyx=y

Proof

Step Hyp Ref Expression
1 df-id I=xy|x=y
2 1 sseq2i RIRxy|x=y
3 df-coss R=xy|uuRxuRy
4 3 sseq1i Rxy|x=yxy|uuRxuRyxy|x=y
5 ssopab2bw xy|uuRxuRyxy|x=yxyuuRxuRyx=y
6 2 4 5 3bitri RIxyuuRxuRyx=y