Metamath Proof Explorer


Theorem coundi

Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion coundi ABC=ABAC

Proof

Step Hyp Ref Expression
1 unopab xy|zxBzzAyxy|zxCzzAy=xy|zxBzzAyzxCzzAy
2 brun xBCzxBzxCz
3 2 anbi1i xBCzzAyxBzxCzzAy
4 andir xBzxCzzAyxBzzAyxCzzAy
5 3 4 bitri xBCzzAyxBzzAyxCzzAy
6 5 exbii zxBCzzAyzxBzzAyxCzzAy
7 19.43 zxBzzAyxCzzAyzxBzzAyzxCzzAy
8 6 7 bitr2i zxBzzAyzxCzzAyzxBCzzAy
9 8 opabbii xy|zxBzzAyzxCzzAy=xy|zxBCzzAy
10 1 9 eqtri xy|zxBzzAyxy|zxCzzAy=xy|zxBCzzAy
11 df-co AB=xy|zxBzzAy
12 df-co AC=xy|zxCzzAy
13 11 12 uneq12i ABAC=xy|zxBzzAyxy|zxCzzAy
14 df-co ABC=xy|zxBCzzAy
15 10 13 14 3eqtr4ri ABC=ABAC