Metamath Proof Explorer


Theorem coundir

Description: Class composition distributes over union. (Contributed by NM, 21-Dec-2008) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion coundir ABC=ACBC

Proof

Step Hyp Ref Expression
1 unopab xz|yxCyyAzxz|yxCyyBz=xz|yxCyyAzyxCyyBz
2 brun yABzyAzyBz
3 2 anbi2i xCyyABzxCyyAzyBz
4 andi xCyyAzyBzxCyyAzxCyyBz
5 3 4 bitri xCyyABzxCyyAzxCyyBz
6 5 exbii yxCyyABzyxCyyAzxCyyBz
7 19.43 yxCyyAzxCyyBzyxCyyAzyxCyyBz
8 6 7 bitr2i yxCyyAzyxCyyBzyxCyyABz
9 8 opabbii xz|yxCyyAzyxCyyBz=xz|yxCyyABz
10 1 9 eqtri xz|yxCyyAzxz|yxCyyBz=xz|yxCyyABz
11 df-co AC=xz|yxCyyAz
12 df-co BC=xz|yxCyyBz
13 11 12 uneq12i ACBC=xz|yxCyyAzxz|yxCyyBz
14 df-co ABC=xz|yxCyyABz
15 10 13 14 3eqtr4ri ABC=ACBC