Metamath Proof Explorer


Theorem coxp

Description: Composition with a Cartesian product. (Contributed by Zhi Wang, 6-Oct-2025)

Ref Expression
Assertion coxp A B × C = B × A C

Proof

Step Hyp Ref Expression
1 relco Rel A B × C
2 relxp Rel B × A C
3 brxp x B × C z x B z C
4 3 anbi1i x B × C z z A y x B z C z A y
5 anass x B z C z A y x B z C z A y
6 4 5 bitri x B × C z z A y x B z C z A y
7 6 exbii z x B × C z z A y z x B z C z A y
8 vex x V
9 vex y V
10 8 9 opelco x y A B × C z x B × C z z A y
11 9 elima2 y A C z z C z A y
12 11 anbi2i x B y A C x B z z C z A y
13 opelxp x y B × A C x B y A C
14 19.42v z x B z C z A y x B z z C z A y
15 12 13 14 3bitr4i x y B × A C z x B z C z A y
16 7 10 15 3bitr4i x y A B × C x y B × A C
17 1 2 16 eqrelriiv A B × C = B × A C