Metamath Proof Explorer


Theorem cphclm

Description: A subcomplex pre-Hilbert space is a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Assertion cphclm WCPreHilWCMod

Proof

Step Hyp Ref Expression
1 cphlmod WCPreHilWLMod
2 eqid ScalarW=ScalarW
3 eqid BaseScalarW=BaseScalarW
4 2 3 cphsca WCPreHilScalarW=fld𝑠BaseScalarW
5 2 3 cphsubrg WCPreHilBaseScalarWSubRingfld
6 2 3 isclm WCModWLModScalarW=fld𝑠BaseScalarWBaseScalarWSubRingfld
7 1 4 5 6 syl3anbrc WCPreHilWCMod