Description: A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008) (Revised by AV, 25-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphssphl.x | ||
| cphssphl.s | |||
| Assertion | cphssphl | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cphssphl.x | ||
| 2 | cphssphl.s | ||
| 3 | simp3 | ||
| 4 | 1 2 | cphsscph | |
| 5 | 4 | 3adant3 | |
| 6 | ishl | ||
| 7 | 3 5 6 | sylanbrc |